Optimal foldover plans for regular s-level fractional factorial designs
Mingyao Ai,
Fred J. Hickernell and
Dennis K.J. Lin
Statistics & Probability Letters, 2008, vol. 78, issue 7, 896-903
Abstract:
This article introduces a general decomposition structure of the foldover plan. While all the previous work is limited to two-level designs, our results here are good for general regular s-level fractional factorial designs, where s is any prime or prime power. The relationships between an initial design and its combined designs are studied. This is done for both with and without consideration of the blocking factor. For illustration of the usage of our theorems, a complete collection of foldover plans for regular three-level designs with 27 runs is given that is optimal for aberration and clear effect numbers.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(07)00297-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:78:y:2008:i:7:p:896-903
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().