On the minimization of concave information functionals for unsupervised classification via decision trees
Damianos Karakos,
Sanjeev Khudanpur,
David J. Marchette,
Adrian Papamarcou and
Carey E. Priebe
Statistics & Probability Letters, 2008, vol. 78, issue 8, 975-984
Abstract:
A popular method for unsupervised classification of high-dimensional data via decision trees is characterized as minimizing the empirical estimate of a concave information functional. It is shown that minimization of such functionals under the true distributions leads to perfect classification.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(07)00350-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:78:y:2008:i:8:p:975-984
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().