EconPapers    
Economics at your fingertips  
 

On the minimization of concave information functionals for unsupervised classification via decision trees

Damianos Karakos, Sanjeev Khudanpur, David J. Marchette, Adrian Papamarcou and Carey E. Priebe

Statistics & Probability Letters, 2008, vol. 78, issue 8, 975-984

Abstract: A popular method for unsupervised classification of high-dimensional data via decision trees is characterized as minimizing the empirical estimate of a concave information functional. It is shown that minimization of such functionals under the true distributions leads to perfect classification.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(07)00350-1
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:78:y:2008:i:8:p:975-984

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:78:y:2008:i:8:p:975-984