Diagnostic checking of multivariate nonlinear time series models with martingale difference errors
Dominique Chabot-Hallé and
Pierre Duchesne ()
Statistics & Probability Letters, 2008, vol. 78, issue 8, 997-1005
Abstract:
In this article, we derive the asymptotic distribution of residual autocovariance and autocorrelation matrices for a general class of multivariate nonlinear time series models by assuming only that the error term is a martingale difference sequence. Two types of applications are developed: global test statistics of the portmanteau type and one-lag test statistics, which describe the residual correlation at individual lags. To illustrate the proposed methodology, simulation results are reported for diagnosing multivariate threshold time series models. The following test statistics are compared: the classical test statistics presuming independent errors and the proposed methodology which supposes only martingale difference errors.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(07)00359-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:78:y:2008:i:8:p:997-1005
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().