EconPapers    
Economics at your fingertips  
 

Best linear prediction for [alpha]-stable random processes

Mohammad Mohammadi and Adel Mohammadpour

Statistics & Probability Letters, 2009, vol. 79, issue 21, 2266-2272

Abstract: The best linear prediction for [alpha]-stable random processes based on some past values is presented. The prediction is the best with respect to a criterion known as stable covariation. The minimum stable covariations can be considered as the smallest error tail probabilities. The predictor obtained is equal to the best linear predictor based on minimization of second-moment error for Gaussian processes.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(09)00288-0
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:79:y:2009:i:21:p:2266-2272

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:79:y:2009:i:21:p:2266-2272