Multivariate extremes of generalized skew-normal distributions
Natalia Lysenko,
Parthanil Roy and
Rolf Waeber
Statistics & Probability Letters, 2009, vol. 79, issue 4, 525-533
Abstract:
We explore extremal properties of a family of skewed distributions extended from the multivariate normal distribution by introducing a skewing function [pi]. We give sufficient conditions on the skewing function for the pairwise asymptotic independence to hold. We apply our results to a special case of the bivariate skew-normal distribution and finally support our conclusions by a simulation study which indicates that the rate of convergence is quite slow.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(08)00461-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:79:y:2009:i:4:p:525-533
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().