On asymptotic convergence of the block-iterative Fisher scoring algorithm
Malcolm Hudson and
Jun Ma
Statistics & Probability Letters, 2010, vol. 80, issue 11-12, 922-925
Abstract:
This short paper studies convergence properties, particularly asymptotic convergence, of the block-iterative Fisher scoring (BFS) algorithms recently proposed by Ma and Hudson (2008). While applicable in other inverse problem domains (e.g. astronomy, geophysics, signal processing or remote sensing), this class of algorithms was designed for tomographic image reconstruction from projections in medicine. A BFS algorithm is used to reconstruct the patient's internal structural or functional activity from collected projection data. We briefly introduce the BFS algorithm and a general convergence result provided in Ma and Hudson (2008). This result is used to prove the asymptotic convergence of two specific BFS algorithms under new conditions.
Keywords: Block-iterative; Fisher; scoring; Penalized; likelihood; Emission; tomography; Asymptotic; convergence (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00041-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:80:y:2010:i:11-12:p:922-925
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().