A penalised data-driven block shrinkage approach to empirical Bayes wavelet estimation
Xue Wang and
Stephen G. Walker
Statistics & Probability Letters, 2010, vol. 80, issue 11-12, 990-996
Abstract:
In this paper we propose a simple Bayesian block wavelet shrinkage method for estimating an unknown function in the presence of Gaussian noise. A data-driven procedure which can adaptively choose the block size and the shrinkage level at each resolution level is provided. The asymptotic property of the proposed method, BBN (Bayesian BlockNorm shrinkage), is investigated in the Besov sequence space. The numerical performance and comparisons with some of existing wavelet denoising methods show that the new method can achieve good performance but with the least computational time.
Keywords: Asymptotics; Besov; space; BlockNorm; shrinkage; Adaptivity (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00060-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:80:y:2010:i:11-12:p:990-996
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().