Consistency of random survival forests
Hemant Ishwaran and
Udaya B. Kogalur
Statistics & Probability Letters, 2010, vol. 80, issue 13-14, 1056-1064
Abstract:
We prove uniform consistency of Random Survival Forests (RSF), a newly introduced forest ensemble learner for analysis of right-censored survival data. Consistency is proven under general splitting rules, bootstrapping, and random selection of variables--that is, under true implementation of the methodology. Under this setting we show that the forest ensemble survival function converges uniformly to the true population survival function. To prove this result we make one key assumption regarding the feature space: we assume that all variables are factors. Doing so ensures that the feature space has finite cardinality and enables us to exploit counting process theory and the uniform consistency of the Kaplan-Meier survival function.
Keywords: Consistency; Ensemble; Factors; Kaplan-Meier; Random; forests (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00067-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:80:y:2010:i:13-14:p:1056-1064
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().