On a robust local estimator for the scale function in heteroscedastic nonparametric regression
Graciela Boente,
Marcelo Ruiz and
Ruben H. Zamar
Statistics & Probability Letters, 2010, vol. 80, issue 15-16, 1185-1195
Abstract:
When the data used to fit an heteroscedastic nonparametric regression model are contaminated with outliers, robust estimators of the scale function are needed in order to obtain robust estimators of the regression function and to construct robust confidence bands. In this paper, local M-estimators of the scale function based on consecutive differences of the responses, for fixed designs are considered. Under mild regularity conditions, the asymptotic behavior of the local M-estimators for general weight functions is derived.
Keywords: Heteroscedasticity; Local; M-estimators; Nonparametric; regression; Robust; estimation (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00095-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:80:y:2010:i:15-16:p:1185-1195
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().