EconPapers    
Economics at your fingertips  
 

A note on some algorithms for the Gibbs posterior

Kun Chen, Wenxin Jiang and Martin A. Tanner

Statistics & Probability Letters, 2010, vol. 80, issue 15-16, 1234-1241

Abstract: Jiang and Tanner (2008) consider a method of classification using the Gibbs posterior which is directly constructed from the empirical classification errors. They propose an algorithm to sample from the Gibbs posterior which utilizes a smoothed approximation of the empirical classification error, via a Gibbs sampler with augmented latent variables. In this paper, we note some drawbacks of this algorithm and propose an alternative method for sampling from the Gibbs posterior, based on the Metropolis algorithm. The numerical performance of the algorithms is examined and compared via simulated data. We find that the Metropolis algorithm produces good classification results at an improved speed of computation.

Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00108-2
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:80:y:2010:i:15-16:p:1234-1241

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:80:y:2010:i:15-16:p:1234-1241