Lévy density estimation via information projection onto wavelet subspaces
Seongjoo Song
Statistics & Probability Letters, 2010, vol. 80, issue 21-22, 1623-1632
Abstract:
This paper proposes a nonparametric method for producing smooth and positive estimates of the density of a Lévy process, which is widely used in mathematical finance. We use the method of logwavelet density estimation to estimate the Lévy density with discretely sampled observations. Since Lévy densities are not necessarily probability densities, we introduce a divergence measure similar to Kullback-Leibler information to measure the difference between two Lévy densities. Rates of convergence are established over Besov spaces.
Keywords: Levy; processes; Density; estimation; Information; projection (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00188-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:80:y:2010:i:21-22:p:1623-1632
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().