Uncertainty and the conditional variance
Jiahua Chen,
Constance van Eeden and
James Zidek
Statistics & Probability Letters, 2010, vol. 80, issue 23-24, 1764-1770
Abstract:
Statisticians have long viewed the quest for more information, for example through the acquisition of additional data, as being central to the goal of reducing uncertainty about some aspect of the world. This paper explores that objective through the variance, a common way of quantifying uncertainty. In particular, it examines the relationship between information and uncertainty. Surprisingly it shows that increasing the amount of information can in some cases increase the variance while in others it can decrease it. Which of these occurs is not explained by the seductive thesis that it depends simply on whether that uncertainty is merely aleatory-due to chance alone-or epistemic-due to lack of knowledge. Through examples it shows the relationship to be complex and a general theory elusive.
Keywords: Information; Normal; distribution; Uncertainty; Variance (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00215-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:80:y:2010:i:23-24:p:1764-1770
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().