An adaptive nonparametric method in benchmark analysis for bioassay and environmental studies
Rabi Bhattacharya and
Lizhen Lin
Statistics & Probability Letters, 2010, vol. 80, issue 23-24, 1947-1953
Abstract:
We present a novel nonparametric method for bioassay and benchmark analysis in risk assessment, which averages isotonic MLEs based on disjoint subgroups of dosages. The asymptotic theory for the methodology is derived, showing that the MISEs (mean integrated squared error) of the estimates of both the dose-response curve F and its inverse F-1 achieve the optimal rate O(N-4/5). Also, we compute the asymptotic distribution of the estimate of the effective dosage [zeta]p=F-1(p) which is shown to have an optimally small asymptotic variance.
Keywords: Monotone; dose-response; curve; estimation; Effective; dosage; Benchmark; analysis; Mean; integrated; square; error; Asymptotic; normality (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00247-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:80:y:2010:i:23-24:p:1947-1953
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().