A convolution identity and more with illustrations
Nitis Mukhopadhyay
Statistics & Probability Letters, 2010, vol. 80, issue 23-24, 1980-1984
Abstract:
We begin with a new, general, interesting, and useful identity (Theorem 2.1) based on recursive convolutions. Next, we extend the basic message from Theorem 2.1 by generalizing it under broadened set of assumptions. Interesting examples are provided involving multivariate Cauchy as well as multivariate equi-correlated normal and equi-correlated t distributions. Then, we discuss yet another approach (Theorem 4.1) that also works in the evaluation of the expectation of a ratio of suitable random variables. Example 4.3 especially stands out because it cannot be handled by the previous approaches, but Theorem 4.1 steps in to help.
Keywords: Basu's; theorem; Cauchy; Chi-square; Convolution; Multivariate; Cauchy; Multivariate; normal; Multivariate; t; Normal; U-statistic (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00252-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:80:y:2010:i:23-24:p:1980-1984
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().