Moderate deviations for deconvolution kernel density estimators with ordinary smooth measurement errors
Weixing Song
Statistics & Probability Letters, 2010, vol. 80, issue 3-4, 169-176
Abstract:
In this paper, we establish the pointwise and uniform moderate deviations limit results for the deconvolution kernel density estimator in the errors-in-variables model, when the measurement error possesses an ordinary smooth distribution. The results are similar to the moderate deviations theorems for the classical kernel density estimators, but a factor related to the ordinary smooth order is needed to account for the measurement errors.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(09)00389-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:80:y:2010:i:3-4:p:169-176
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().