Consistent density deconvolution under partially known error distribution
Maik Schwarz and
Sebastien Van Bellegem ()
Statistics & Probability Letters, 2010, vol. 80, issue 3-4, 236-241
Abstract:
We estimate the distribution of a real-valued random variable from contaminated observations. The additive error is supposed to be normally distributed, but with an unknown variance. The distribution is identifiable from the observations if we restrict the class of considered distributions by a simple condition in the time domain. A minimum distance estimator is shown to be consistent imposing only a slightly stronger assumption than the identification condition.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(09)00398-8
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Consistent Density Deconvolution under Partially Known Error Distribution (2009) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:80:y:2010:i:3-4:p:236-241
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().