A note on the geometric ergodicity of a nonlinear AR-ARCH model
Mika Meitz () and
Pentti Saikkonen
Statistics & Probability Letters, 2010, vol. 80, issue 7-8, 631-638
Abstract:
This note studies the geometric ergodicity of nonlinear autoregressive models with conditionally heteroskedastic errors. A nonlinear autoregression of order p (AR(p)) with the conditional variance specified as the conventional linear autoregressive conditional heteroskedasticity model of order q (ARCH(q)) is considered. Conditions under which the Markov chain representation of this nonlinear AR-ARCH model is geometrically ergodic and has moments of known order are provided. The obtained results complement those of Liebscher [Liebscher, E., 2005. Towards a unified approach for proving geometric ergodicity and mixing properties of nonlinear autoregressive processes, Journal of Time Series Analysis, 26, 669-689] by showing how his approach based on the concept of the joint spectral radius of a set of matrices can be extended to establish geometric ergodicity in nonlinear autoregressions with conventional ARCH(q) errors.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(09)00478-7
Full text for ScienceDirect subscribers only
Related works:
Working Paper: A note on the geometric ergodicity of a nonlinear AR–ARCH model (2010) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:80:y:2010:i:7-8:p:631-638
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().