Comparing extreme models when the sign of the extreme value index is known
Deyuan Li and
Liang Peng
Statistics & Probability Letters, 2010, vol. 80, issue 7-8, 739-746
Abstract:
In the literature on analyzing extremes, both generalized Pareto distributions and Pareto distributions are employed to infer the tail of a distribution with a known positive extreme value index. Similar studies exist for a known negative extreme value index. Intuitively, one should not employ the generalized Pareto distribution in the case of knowing the sign of the extreme value index. In this work, we show that fitting a generalized Pareto distribution is equivalent to the model in Hall (1982) in the case of a negative extreme value index, in both improving the rate of convergence and including the bias term of the asymptotic results of that reference. When the extreme value index is known to be positive, we show that fitting a generalized Pareto distribution may be preferred in some cases determined by a so-called second-order parameter and the extreme value index itself.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00009-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:80:y:2010:i:7-8:p:739-746
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().