A new proof that the product of three or more exponential random variables is moment-indeterminate
Sofiya Ostrovska and
Jordan Stoyanov
Statistics & Probability Letters, 2010, vol. 80, issue 9-10, 792-796
Abstract:
We present a direct, short and transparent proof of the following result:Â The product X1...Xn of independent exponential random variables X1,...,Xn is moment-indeterminate if and only if n>=3. This and other complex analytic results concerning Stieltjes moment sequences and properties of the corresponding distributions appeared recently in Berg (2005).
Keywords: Product; of; exponential; random; variables; Stieltjes; problem; of; moments; M-determinate; distribution; M-indeterminate; distribution (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00017-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:80:y:2010:i:9-10:p:792-796
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().