A Central Limit Theorem for linear random fields
Atul Mallik and
Michael Woodroofe
Statistics & Probability Letters, 2011, vol. 81, issue 11, 1623-1626
Abstract:
A Central Limit Theorem is proved for linear random fields when sums are taken over union of finitely many disjoint rectangles. The approach does not rely upon the use of Beveridge-Nelson decomposition and the conditions needed are similar in nature to those given by Ibragimov for linear processes. When specializing this result to the case when sums are being taken over rectangles, a complete analogue of the Ibragimov result is obtained for random fields with a lot of uniformity.
Keywords: Central; Limit; Theorem; Random; field; Linear; random; fields (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715211002094
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:81:y:2011:i:11:p:1623-1626
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().