Nonparametric estimation of the log odds ratio for sparse data by kernel smoothing
Ziqi Chen,
Ning-Zhong Shi and
Wei Gao
Statistics & Probability Letters, 2011, vol. 81, issue 12, 1802-1807
Abstract:
Regression analysis of the odds ratios for sparse data has received a lot of attention. However, existing works are restricted to the parametric case, and a parametric model may be a misspecification, which may lead to biased and inefficient estimators. Little attention is received for nonparametric regression analysis of the odds ratios. Based on kernel smoothing techniques, we propose two simple estimators of the log odds-ratio function for sparse data. Large sample properties of the estimators are derived, and the methods proposed are evaluated through simulation.
Keywords: Mantel–Haenszel estimating function; Odds ratio; Sparse data (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715211002276
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:81:y:2011:i:12:p:1802-1807
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2011.06.017
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().