EconPapers    
Economics at your fingertips  
 

Weak consistency of the Support Vector Machine Quantile Regression approach when covariates are functions

Christophe Crambes, Ali Gannoun and Yousri Henchiri

Statistics & Probability Letters, 2011, vol. 81, issue 12, 1847-1858

Abstract: This paper deals with a nonparametric estimation of conditional quantile regression when the explanatory variable X takes its values in a bounded subspace of a functional space X and the response Y takes its values in a compact of the space Y≔R. The functional observations, X1,…,Xn, are projected onto a finite dimensional subspace having a suitable orthonormal system. The Xi’s will be characterized by their coordinates in this basis. We perform the Support Vector Machine Quantile Regression approach in finite dimension with the selected coefficients. Then we establish weak consistency of this estimator. The various parameters needed for the construction of this estimator are automatically selected by data-splitting and by penalized empirical risk minimization.

Keywords: Conditional quantile regression; Functional covariates; Ill-conditioned inverse problem; Reproducing kernel Hilbert space; Support Vector Machine (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715211002392
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:81:y:2011:i:12:p:1847-1858

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spl.2011.07.008

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:81:y:2011:i:12:p:1847-1858