EconPapers    
Economics at your fingertips  
 

Fractional normal inverse Gaussian diffusion

A. Kumar, Mark M. Meerschaert and P. Vellaisamy

Statistics & Probability Letters, 2011, vol. 81, issue 1, 146-152

Abstract: A fractional normal inverse Gaussian (FNIG) process is a fractional Brownian motion subordinated to an inverse Gaussian process. This paper shows how the FNIG process emerges naturally as the limit of a random walk with correlated jumps separated by i.i.d. waiting times. Similarly, we show that the NIG process, a Brownian motion subordinated to an inverse Gaussian process, is the limit of a random walk with uncorrelated jumps separated by i.i.d. waiting times. The FNIG process is also derived as the limit of a fractional ARIMA processes. Finally, the NIG densities are shown to solve the relativistic diffusion equation from statistical physics.

Keywords: Continuous; time; random; walk; Fractional; Brownian; motion; Normal; inverse; Gaussian; process; Subordination (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00283-X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:81:y:2011:i:1:p:146-152

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:81:y:2011:i:1:p:146-152