EconPapers    
Economics at your fingertips  
 

Insuring against loss of evidence in game-theoretic probability

A. Philip Dawid, Steven de Rooij, Glenn Shafer, Alexander Shen, Nikolai Vereshchagin and Vladimir Vovk

Statistics & Probability Letters, 2011, vol. 81, issue 1, 157-162

Abstract: Statistical testing can be framed as a repetitive game between two players, Forecaster and Sceptic. In each round, Forecaster sets prices for various gambles, and Sceptic chooses which gambles to make. If Sceptic multiplies by a large factor the capital he puts at risk, he has evidence against Forecaster's ability. His capital at the end of each round is a measure of his evidence against Forecaster so far. This can go up and then back down. If you report the maximum so far instead of the current value, you are exaggerating the evidence against Forecaster. In this article, we show how to remove the exaggeration. Removing it means systematically reducing the maximum in such a way that a rival to Sceptic can always play so as to obtain current evidence as good as Sceptic's reduced maximum. We characterize the functions that can achieve such reductions. Because these functions may impose only modest reductions, we think of our result as a method of insuring against loss of evidence. In the context of an actual market, it is a method of insuring against the loss of what an investor has gained so far.

Keywords: Evidence; Game-theoretic; probability; Martingales; Mathematical; finance (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00296-8
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:81:y:2011:i:1:p:157-162

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:81:y:2011:i:1:p:157-162