Empirical likelihood for LAD estimators in infinite variance ARMA models
Jinyu Li,
Wei Liang and
Shuyuan He
Statistics & Probability Letters, 2011, vol. 81, issue 2, 212-219
Abstract:
In this paper, we use an empirical likelihood method to construct confidence regions for the stationary ARMA(p,q) models with infinite variance. An empirical log-likelihood ratio is derived by the estimating equation of the self-weighted LAD estimator. It is proved that the proposed statistic has an asymptotic standard chi-squared distribution. Simulation studies show that in a small sample case, the performance of empirical likelihood method is better than that of normal approximation of the LAD estimator in terms of the coverage accuracy.
Keywords: ARMA; model; Infinite; variance; Empirical; likelihood; LAD; estimation (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00329-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:81:y:2011:i:2:p:212-219
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().