Some inequalities for strong mixing random variables with applications to density estimation
Yongming Li,
Shanchao Yang and
Chengdong Wei
Statistics & Probability Letters, 2011, vol. 81, issue 2, 250-258
Abstract:
In this paper, we establish an inequality of the characteristic functions for strongly mixing random vectors, by which, an upper bound is provided for the supremum of the absolute value of the difference of two multivariate probability density functions based on strongly mixing random vectors. As its application, we consider the consistency and asymptotic normality of a kernel estimate of a density function under strong mixing. Our results generalize some known results in the literature.
Keywords: Strong; mixing; processes; Esseen-type; inequality; Kernel; estimate (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00280-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:81:y:2011:i:2:p:250-258
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().