Smooth estimation of survival and density functions for a stationary associated process using Poisson weights
Yogendra P. Chaubey,
Isha Dewan and
Jun Li
Statistics & Probability Letters, 2011, vol. 81, issue 2, 267-276
Abstract:
Let {Xn,n>=1} be a sequence of stationary non-negative associated random variables with common marginal density f(x). Here we use the empirical survival function as studied in Bagai and Prakasa Rao (1991) and apply the smoothing technique proposed by Gawronski (1980) (see also Chaubey and Sen, 1996) in proposing a smooth estimator of the density function f and that of the corresponding survival function. Some asymptotic properties of the resulting estimators, similar to those obtained in Chaubey and Sen (1996) for the i.i.d. case, are derived. A simulation study has been carried out to compare the new estimator to the kernel estimator of a density function given in Bagai and Prakasa Rao (1996) and the estimator in Buch-Larsen et al. (2005).
Keywords: Associated; sequence; Hille's; theorem; Strong; consistency; Survival; function; Transformation; density; estimator (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00292-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:81:y:2011:i:2:p:267-276
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().