On approximation of smoothing probabilities for hidden Markov models
Jüri Lember
Statistics & Probability Letters, 2011, vol. 81, issue 2, 310-316
Abstract:
We consider the smoothing probabilities of hidden Markov model (HMM). We show that under fairly general conditions for HMM, the exponential forgetting still holds, and the smoothing probabilities can be well approximated with the ones of double-sided HMM. This makes it possible to use ergodic theorems. As an application we consider the pointwise maximum a posteriori segmentation, and show that the corresponding risks converge.
Keywords: Hidden; Markov; models; Smoothing; Segmentation (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00305-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:81:y:2011:i:2:p:310-316
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().