EconPapers    
Economics at your fingertips  
 

On approximation of smoothing probabilities for hidden Markov models

Jüri Lember

Statistics & Probability Letters, 2011, vol. 81, issue 2, 310-316

Abstract: We consider the smoothing probabilities of hidden Markov model (HMM). We show that under fairly general conditions for HMM, the exponential forgetting still holds, and the smoothing probabilities can be well approximated with the ones of double-sided HMM. This makes it possible to use ergodic theorems. As an application we consider the pointwise maximum a posteriori segmentation, and show that the corresponding risks converge.

Keywords: Hidden; Markov; models; Smoothing; Segmentation (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00305-6
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:81:y:2011:i:2:p:310-316

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:81:y:2011:i:2:p:310-316