The asymptotic behavior of linear placement statistics
Dongjae Kim,
Sungchul Lee and
Wensheng Wang
Statistics & Probability Letters, 2011, vol. 81, issue 2, 326-336
Abstract:
Orban and Wolfe (1982) and Kim (1999) provided the limiting distribution for linear placement statistics under null hypotheses only when one of the sample sizes goes to infinity. In this paper we prove the asymptotic normality and the weak convergence of the linear placement statistics of Orban and Wolfe (1982) and Kim (1999) when the sample sizes of each group go to infinity simultaneously.
Keywords: Central; limit; theorem; Weak; convergence; Distribution-free; procedure; Linear; placement; statistic (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00307-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:81:y:2011:i:2:p:326-336
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().