EconPapers    
Economics at your fingertips  
 

On convergence of moment generating functions

N.G. Ushakov and V.G. Ushakov

Statistics & Probability Letters, 2011, vol. 81, issue 4, 502-505

Abstract: Mukherjea et al. [Mukherjea, A., Rao, M., Suen, S., 2006. A note on moment generating functions. Statist. Probab. Lett. 76, 1185-1189] proved that if a sequence of moment generating functions Mn(t) converges pointwise to a moment generating function M(t) for all t in some open interval of the real line, not necessarily containing the origin, then the distribution functions Fn (corresponding to Mn) converge weakly to the distribution function F (corresponding to M). In this note, we improve this result and obtain conditions of the convergence which seem to be sharp: Fn converge weakly to F if Mn(tk) converge to M(tk), k=1,2,..., for some sequence {t1,t2,...} having the minimal and the maximal points. A similar result holds for characteristic functions.

Keywords: Moment; generating; function; Weak; convergence (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00353-6
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:81:y:2011:i:4:p:502-505

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:81:y:2011:i:4:p:502-505