Empirical likelihood inference for the accelerated failure time model
Yichuan Zhao
Statistics & Probability Letters, 2011, vol. 81, issue 5, 603-610
Abstract:
Accelerated failure time (AFT) models are useful regression tools for studying the association between a survival time and covariates. Semiparametric inference procedures have been proposed in an extensive literature. Among these, use of an estimating equation which is monotone in the regression parameter and has some excellent properties was proposed by Fygenson and Ritov (1994). However, there is a serious under-coverage problem for small sample sizes. In this paper, we derive the limiting distribution of the empirical log-likelihood ratio for the regression parameter on the basis of the monotone estimating equations. Furthermore, the empirical likelihood (EL) confidence intervals/regions for the regression parameter are obtained. We conduct a simulation study in order to compare the proposed EL method with the normal approximation method. The simulation results suggest that the empirical likelihood based method outperforms the normal approximation based method in terms of coverage probability. Thus, the proposed EL method overcomes the under-coverage problem of the normal approximation method.
Keywords: Average; length; Confidence; interval/region; Coverage; probability; Monotone; estimating; equation; Right; censoring (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(11)00015-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:81:y:2011:i:5:p:603-610
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().