EconPapers    
Economics at your fingertips  
 

Bootstrap with larger resample size for root-n consistent density estimation with time series data

Christopher C. Chang and Dimitris N. Politis

Statistics & Probability Letters, 2011, vol. 81, issue 6, 652-661

Abstract: We consider finite-order moving average and nonlinear autoregressive processes with no parametric assumption on the error distribution, and present a kernel density estimator of a bootstrap series that estimates their marginal densities root-n consistently. This is equal to the rate of the best known convolution estimators, and is faster than the standard kernel density estimator. We also conduct simulations to check the finite sample properties of our estimator, and the results are generally better than corresponding results for the standard kernel density estimator.

Keywords: Kernel; function; Convolution; estimator; Nonparametric; density; estimation; Moving; average; process; Nonlinear; autoregressive; process (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(11)00046-0
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:81:y:2011:i:6:p:652-661

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:81:y:2011:i:6:p:652-661