EconPapers    
Economics at your fingertips  
 

On the degree evolution of a fixed vertex in some growing networks

Mathias Lindholm and Thomas Vallier

Statistics & Probability Letters, 2011, vol. 81, issue 6, 673-677

Abstract: Two preferential attachment-type graph models which allow for dynamic addition/deletion of edges/vertices are considered. The focus of this paper is on the limiting expected degree of a fixed vertex. For both models a phase transition is seen to occur, i.e. if the probability with which edges are deleted is below a model-specific threshold value, the limiting expected degree is infinite, but if the probability is higher than the threshold value, the limiting expected degree is finite. In the regime above the critical threshold probability, however, the behaviour of the two models may differ. For one of the models a non-zero (as well as zero) limiting expected degree can be obtained whilst the other only has a zero limit. Furthermore, this phase transition is seen to occur for the same critical threshold probability of removing edges as the one which determines whether the degree sequence is of power-law type or if the tails decays exponentially fast.

Keywords: Preferential; attachment; Preferential; deletion; Expected; degree (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(11)00061-7
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:81:y:2011:i:6:p:673-677

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:81:y:2011:i:6:p:673-677