EconPapers    
Economics at your fingertips  
 

NM-QELE for ARMA-GARCH models with non-Gaussian innovations

Jeongcheol Ha and Taewook Lee

Statistics & Probability Letters, 2011, vol. 81, issue 6, 694-703

Abstract: Although the quasi maximum likelihood estimator based on Gaussian density (Gaussian-QMLE) is widely used to estimate parameters in ARMA models with GARCH innovations (ARMA-GARCH models), it does not perform successfully when error distribution of ARMA-GARCH models is either skewed or leptokurtic. In order to circumvent such defects, Lee and Lee (submitted for publication) proposed the quasi maximum estimated-likelihood estimator using Gaussian mixture-based likelihood (NM-QELE) for GARCH models. In this paper, we adopt the NM-QELE method for estimating parameters in ARMA-GARCH models and demonstrate the validity of NM-QELE by verifying its consistency.

Keywords: ARMA-GARCH; model; Consistency; Gaussian; mixture; model; QMLE; Quasi-maximum; estimated-likelihood; estimator (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(11)00042-3
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:81:y:2011:i:6:p:694-703

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:81:y:2011:i:6:p:694-703