A hidden Markov model for informative dropout in longitudinal response data with crisis states
Alessandra Spagnoli,
Robin Henderson,
Richard J. Boys and
Jeanine J. Houwing-Duistermaat
Statistics & Probability Letters, 2011, vol. 81, issue 7, 730-738
Abstract:
We adopt a hidden state approach for the analysis of longitudinal data subject to dropout. Motivated by two applied studies, we assume that subjects can move between three states: stable, crisis, dropout. Dropout is observed but the other two states are not. During a possibly transient crisis state both the longitudinal response distribution and the probability of dropout can differ from those for the stable state. We adopt a linear mixed effects model with subject-specific trajectories during stable periods and additional random jumps during crises. We place the model in the context of Rubin's taxonomy and develop the associated likelihood. The methods are illustrated using the two motivating examples.
Keywords: Change; points; Monotonic; missing; data; Mixed; models; Random; effects; State; space (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(11)00043-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:81:y:2011:i:7:p:730-738
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().