Pseudo-likelihood methodology for partitioned large and complex samples
Geert Molenberghs,
Geert Verbeke and
Samuel Iddi
Statistics & Probability Letters, 2011, vol. 81, issue 7, 892-901
Abstract:
Large data sets, either coming from a large number of independent replications, or because of hierarchies in the data with large numbers of within-unit replication, may pose challenges to the data analyst up to the point of making conventional inferential methods, such as maximum likelihood, prohibitive. Based on general pseudo-likelihood concepts, we propose a method to partition such a set of data, analyze each partition member, and properly combine the inferences into a single one. It is shown that the method is fully efficient for independent partitions, while with dependent sub-samples efficiency is sometimes but not always equal to one. It is argued that, for important realistic settings, efficiency is often very high. Illustrative examples enhance insight in the method's operation, while real-data analysis underscores its power for practice.
Keywords: Asymptotic; relative; efficiency; Compound-symmetry; Small-sample; relative; efficiency (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(11)00019-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:81:y:2011:i:7:p:892-901
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().