Importance sampling as a variational approximation
David J. Nott,
Jialiang Li and
Mark Fielding
Statistics & Probability Letters, 2011, vol. 81, issue 8, 1052-1055
Abstract:
There is a well-recognized need to develop Bayesian computational methodologies that scale well to large data sets. Recent attempts to develop such methodology have often focused on two approaches--variational approximation and advanced importance sampling methods. This note shows how importance sampling can be viewed as a variational approximation, achieving a pleasing conceptual unification of the two points of view. We consider a particle representation of a distribution as defining a certain parametric model and show how the optimal approximation (in the sense of minimization of a Kullback-Leibler divergence) leads to importance sampling type rules. This new way of looking at importance sampling has the potential to generate new algorithms by the consideration of deterministic choices of particles in particle representations of distributions.
Keywords: Bayesian; computation; Importance; sampling; Variational; approximation (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715211000745
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:81:y:2011:i:8:p:1052-1055
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().