Godambe estimating functions and asymptotic optimal inference
S.Y. Hwang and
I.V. Basawa
Statistics & Probability Letters, 2011, vol. 81, issue 8, 1121-1127
Abstract:
Godambe (1985) introduced a class of optimum estimating functions which can be regarded as a generalization of quasilikelihood score functions. The "optimality" established by Godambe (1985) within a certain class is for estimating functions and it is based on finite samples. The question that arises naturally is what (if any) asymptotic optimality properties do the estimators and tests based on optimum estimating functions possess. In this paper, we establish, via presenting a convolution theorem, asymptotic optimality of estimators and tests obtained from Godambe optimum estimating functions. It is noted that we do not require the knowledge of the likelihood function.
Keywords: Asymptotic; optimality; Godambe; estimating; functions; Large; sample; tests; Quasilikelihood; estimation (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715211000897
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:81:y:2011:i:8:p:1121-1127
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().