High-dimensional generation of Bernoulli random vectors
Reza Modarres
Statistics & Probability Letters, 2011, vol. 81, issue 8, 1136-1142
Abstract:
The objective of this paper is to explore different modeling strategies to generate high-dimensional Bernoulli vectors. We discuss the multivariate Bernoulli (MB) distribution, probe its properties and examine three models for generating random vectors. A latent multivariate normal model whose bivariate distributions are approximated with Plackett distributions with univariate normal distributions is presented. A conditional mean model is examined where the conditional probability of success depends on previous history of successes. A mixture of beta distributions is also presented that expresses the probability of the MB vector as a product of correlated binary random variables. Each method has a domain of effectiveness. The latent model offers unpatterned correlation structures while the conditional mean and the mixture model provide computational feasibility for high-dimensional generation of MB vectors.
Keywords: Binary; Mixture; Latent; Dependence; Network (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715211000915
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:81:y:2011:i:8:p:1136-1142
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().