Estimation of the offspring mean in a supercritical branching process with non-stationary immigration
I. Rahimov
Statistics & Probability Letters, 2011, vol. 81, issue 8, 907-914
Abstract:
In this paper, we consider the conditional least squares estimator (CLSE) of the offspring mean of a branching process with non-stationary immigration based on the observation of population sizes. In the supercritical case, assuming that the immigration variables follow known distributions, conditions guaranteeing the strong consistency of the proposed estimator will be derived. The asymptotic normality of the estimator will also be proved. The proofs are based on direct probabilistic arguments, unlike the previous papers, where functional limit theorems for the process were used.
Keywords: Supercritical; branching; process; Time-dependent; immigration; Offspring; mean; Weighted; estimator; Consistency (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715211001295
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:81:y:2011:i:8:p:907-914
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().