EconPapers    
Economics at your fingertips  
 

On stochastic orderings of the Wilcoxon Rank Sum test statistic--With applications to reproducibility probability estimation testing

L. De Capitani and D. De Martini

Statistics & Probability Letters, 2011, vol. 81, issue 8, 937-946

Abstract: Recently, the possibility of testing statistical hypotheses through the estimate of the reproducibility probability (i.e. the estimate of the power of the statistical test) in a general parametric framework has been introduced. In this paper, we provide some results on the stochastic orderings of the Wilcoxon Rank Sum (WRS) statistic, implying, for example, that the related test is strictly unbiased. Moreover, under some regularity conditions, we show that it is possible to define a continuous and strictly monotone power function of the WRS test. This last result is useful in order to obtain a point estimator and lower bounds for the power of the WRS test. In analogy with the parametric setting, we show that these power estimators, alias reproducibility probability estimators, can be used as test statistic, i.e. it is possible to refer directly to the estimate of the reproducibility probability to perform the WRS test. Some reproducibility probability estimators based on asymptotic approximations of the power are provided. A brief simulation shows a very high agreement between the approximated reproducibility probability based tests and the classical one.

Keywords: Wilcoxon; Rank; Sum; test; Reproducibility; probability; estimation; Reproducibility; probability; estimation; testing (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715211001325
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:81:y:2011:i:8:p:937-946

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:81:y:2011:i:8:p:937-946