An empirical likelihood approach to data analysis under two-stage sampling designs
Ming Zheng and
Wen Yu
Statistics & Probability Letters, 2011, vol. 81, issue 8, 947-956
Abstract:
A new empirical likelihood approach is developed to analyze data from two-stage sampling designs, in which a primary sample of rough or proxy measures for the variables of interest and a validation subsample of exact information are available. The validation sample is assumed to be a simple random subsample from the primary one. The proposed empirical likelihood approach is capable of utilizing all the information from both the specific models and the two available samples flexibly. It maintains some nice features of the empirical likelihood method and improves the asymptotic efficiency of the existing inferential procedures. The asymptotic properties are derived for the new approach. Some numerical studies are carried out to assess the finite sample performance.
Keywords: Empirical; likelihood; Missing; data; Over-identified; Two-stage; sampling; Validation; sample (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715211000186
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:81:y:2011:i:8:p:947-956
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().