Lévy area for Gaussian processes: A double Wiener-Itô integral approach
Albert Ferreiro-Castilla and
Frederic Utzet
Statistics & Probability Letters, 2011, vol. 81, issue 9, 1380-1391
Abstract:
Let {X1(t)}0 1, then the Lévy area can be defined as a double Wiener-Itô integral with respect to an isonormal Gaussian process induced by X1 and X2. Moreover, some properties of the characteristic function of that generalised Lévy area are studied.
Keywords: Levy; area; p-variation; Fractional; Brownian; motion; Multiple; Wiener-Ito; integral; Young's; inequality (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715211001556
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:81:y:2011:i:9:p:1380-1391
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().