EconPapers    
Economics at your fingertips  
 

An optimal k-nearest neighbor for density estimation

Yi-Hung Kung, Pei-Sheng Lin and Cheng-Hsiung Kao

Statistics & Probability Letters, 2012, vol. 82, issue 10, 1786-1791

Abstract: A k-nearest neighbor method, which has been widely applied in machine learning, is a useful tool to obtain statistical inference for an underlying distribution of multi-dimensional data. However, the knowledge on choosing an optimal order for the k-nearest neighbor is relatively little. This paper proposes an asymptotic distribution for the nearest neighbor statistic. Under some conditions, we find an optimal unbiased density estimate based on a linear combination of nearest neighbors, and it leads to an optimal choice for the order of the k-nearest neighbor.

Keywords: Density estimation; Multi-dimensional data; Nearest neighbor method (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715212001927
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:82:y:2012:i:10:p:1786-1791

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spl.2012.05.017

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:82:y:2012:i:10:p:1786-1791