Local Walsh-average regression for semiparametric varying-coefficient models
Suoping Shang,
Changliang Zou and
Zhaojun Wang
Statistics & Probability Letters, 2012, vol. 82, issue 10, 1815-1822
Abstract:
This work is concerned with robust estimation in a semiparametric varying-coefficient partially linear model when the underlying error distribution deviates from a normal distribution. We develop a robust estimator by minimizing a locally Walsh-average-based loss function. We show theoretically that the proposed estimator is highly efficient across a wide spectrum of distributions. Its asymptotic relative efficiency with respect to the least-squares-based method is closely related to that of the signed-rank Wilcoxon test in comparison with the t-test. Both the theoretical and the numerical results demonstrate that the performance of the new approach is at least comparable to those of existing works.
Keywords: Asymptotic efficiency; Local linear regression; Robust nonparametric regression; Semiparametric composite quantile estimator; Walsh-average (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715212002131
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:82:y:2012:i:10:p:1815-1822
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2012.05.028
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().