On unbiased optimal L-statistics quantile estimators
Ling-Wei Li,
Loo-Hay Lee,
Chun-Hung Chen and
Bo Guo
Statistics & Probability Letters, 2012, vol. 82, issue 11, 1891-1897
Abstract:
Recently, Li et al. (2012a,b) have presented two biased Optimal L-statistics Quantile Estimators (OLQEs). In this work, we present two unbiased versions of the two biased OLQEs. Similar to the biased OLQEs, the proposed unbiased OLQEs are able to accommodate a set of scaled populations and a set of location-scale populations, respectively. Furthermore, we compare the proposed unbiased OLQEs with two state-of-the-art efficient unbiased estimators, called Best Linear Unbiased Estimators (BLUEs). Although OLQEs and BLUEs have different aims and models, we point out that the two proposed unbiased OLQEs are closely related to the two BLUEs, respectively. The differences between the unbiased OLQEs and the BLUEs are also provided. We conduct an experimental study to demonstrate that, for a set of location-scale populations and extreme quantiles, if the main concern is large biases, then a proposed unbiased location equivariance OLQE is more appealing.
Keywords: Unbiased quantile estimator; L-statistics; Location-scale distributions; Best linear unbiased estimator (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016771521200212X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:82:y:2012:i:11:p:1891-1897
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2012.05.027
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().