A causal framework for surrogate endpoints with semi-competing risks data
Debashis Ghosh
Statistics & Probability Letters, 2012, vol. 82, issue 11, 1898-1902
Abstract:
In this note, we address the problem of surrogacy using a causal modelling framework that differs substantially from the potential outcomes model that pervades the biostatistical literature. The framework comes from econometrics, and it conceptualizes direct effects of the surrogate endpoint on the true endpoint. While this framework can incorporate the so-called semi-competing risks data structure, we also derive a fundamental non-identifiability result. Relationships to existing causal modelling frameworks are also discussed.
Keywords: Clinical trial; Counterfactual; Dependence; Prentice criteria; Rubin causal model (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715212002210
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:82:y:2012:i:11:p:1898-1902
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2012.06.010
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().