EconPapers    
Economics at your fingertips  
 

The two-parameter Volterra multifractional process

Ibrahima Mendy

Statistics & Probability Letters, 2012, vol. 82, issue 12, 2115-2124

Abstract: In the case where the parameters H1 and H2 belong to (1/2,1), Feyel and De La Pradelle (1991) have introduced a representation of the usual fractional Brownian sheet {Bs,tH1,H2}(s,t)∈R+2, as a stochastic integral over the compact rectangle [0,s]×[0,t], with respect to the Brownian sheet. In this paper, we introduce the so-called two-parameter Volterra multifractional process by replacing in the latter representation of {Bs,tH1,H2}(s,t)∈R+2 the constant parameters H1 and H2 by two Hölder functions α(s) and β(t) with values in (1/2,1). We obtain that the pointwise and the local Hölder exponents of the two-parameter Volterra multifractional process at any point (s0,t0) are equal to min(α(s0),β(t0)).

Keywords: Fractional Brownian sheet; Volterra; Multifractional process (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715212002933
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:82:y:2012:i:12:p:2115-2124

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spl.2012.07.021

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:82:y:2012:i:12:p:2115-2124