On the uniqueness of distance covariance
Gábor J. Székely and
Maria L. Rizzo
Statistics & Probability Letters, 2012, vol. 82, issue 12, 2278-2282
Abstract:
Distance covariance and distance correlation are non-negative real numbers that characterize the independence of random vectors in arbitrary dimensions. In this work we prove that distance covariance is unique, starting from a definition of a covariance as a weighted L2 norm that measures the distance between the joint characteristic function of two random vectors and the product of their marginal characteristic functions. Rigid motion invariance and scale equivariance of these weighted L2 norms imply that the weight function of distance covariance is unique.
Keywords: dCor; dCov; Multivariate independence; Distance covariance; Distance correlation (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715212003124
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:82:y:2012:i:12:p:2278-2282
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2012.08.007
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().