Spectral analytic comparisons for data augmentation
Vivekananda Roy
Statistics & Probability Letters, 2012, vol. 82, issue 1, 103-108
Abstract:
The sandwich algorithm (SA) is an alternative to the data augmentation (DA) algorithm that uses an extra simulation step at each iteration. In this paper, we show that the sandwich algorithm always converges at least as fast as the DA algorithm, in the Markov operator norm sense. We also establish conditions under which the spectrum of SA dominates that of DA. An example illustrates the results.
Keywords: Compact operator; Convergence rate; Data augmentation algorithm; Eigenvalue; Markov chain (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715211002963
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:82:y:2012:i:1:p:103-108
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2011.09.009
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().